Search results

Search for "secondary alcohols" in Full Text gives 92 result(s) in Beilstein Journal of Organic Chemistry.

Metal catalyst-free N-allylation/alkylation of imidazole and benzimidazole with Morita–Baylis–Hillman (MBH) alcohols and acetates

  • Olfa Mhasni,
  • Jalloul Bouajila and
  • Farhat Rezgui

Beilstein J. Org. Chem. 2023, 19, 1251–1258, doi:10.3762/bjoc.19.93

Graphical Abstract
  • secondary alcohols 4c,d (R = Me) [30] could be achieved with imidazole derivatives 2a,b under the conditions established above affording within 24–72 h the allylation products 6c,d and 7d in 60–85% yields (Table 1, entries 10–12). Mechanistically, we believe that the nucleophilic allylic substitutions of
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • -disubstituted olefin and reductive epoxide ring-opening giving triol 18. After oxidation of the primary and the secondary alcohols with Dess–Martin periodinane, the remaining tertiary alcohol was protected as a MOM ether and the silyl ether protecting group was removed. The obtained intermediate 19 was then a
  • suitable starting material for the SmI2-promoted pinacol coupling, directed by the free hydroxy group, affording a complete selectivity in the formation of the 7-membered ring B. The synthesis of grayanotoxin III was then achieved by acetylation of the secondary alcohols, oxidative cleavage of the MOM
PDF
Album
Review
Published 12 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • be selectively oxidized in the presence of secondary alcohols. In the case of co-catalysts Fe(NO3)3 or NOx species (NaNO2, HNO3, t-BuONO), an aminoxyl is oxidized in situ to an oxoammonium cation, which oxidizes alcohols. Fe and NOx-based methods demonstrate lower functional group compatibility and
PDF
Album
Perspective
Published 09 Dec 2022

A study of the DIBAL-promoted selective debenzylation of α-cyclodextrin protected with two different benzyl groups

  • Naser-Abdul Yousefi,
  • Morten L. Zimmermann and
  • Mikael Bols

Beilstein J. Org. Chem. 2022, 18, 1553–1559, doi:10.3762/bjoc.18.165

Graphical Abstract
  • secondary alcohols was prepared and subjected to DIBAL (diisobutylaluminum hydride)-promoted selective debenzylation. Debenzylation proceeded by first removing two dichlorobenzyl groups from the 6A,D positions and then removing one or two benzyl groups from the 3A,D positions. Keywords: aluminum hydrides
  • are deprotected more readily than the secondary alcohols of 1. Results and Discussion The starting point of the synthesis is the known partially benzylated derivative 6, which according to the literature can be made either from 2 by selective acetolysis of all the primary benzyl groups and ester
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2022

Cyclometalated iridium complexes-catalyzed acceptorless dehydrogenative coupling reaction: construction of quinoline derivatives and evaluation of their antimicrobial activities

  • Hongling Shui,
  • Yuhong Zhong,
  • Renshi Luo,
  • Zhanyi Zhang,
  • Jiuzhong Huang,
  • Ping Yang and
  • Nianhua Luo

Beilstein J. Org. Chem. 2022, 18, 1507–1517, doi:10.3762/bjoc.18.159

Graphical Abstract
  • Abstract The acceptorless dehydrogenative coupling (ADC) reaction is an efficient method for synthesizing quinoline and its derivatives. In this paper, various substituted quinolines were synthesized from 2-aminobenzyl alcohols and aryl/heteroaryl/alkyl secondary alcohols in one pot via a cyclometalated
  • secondary alcohols 2 that allowed for the efficient synthesis of a series of quinolines 3 (up to 95% yield and >99:1 selectivity) (Figure 2). A preliminary evaluation of the compounds’ potential antibacterial activity was also performed. Results and Discussion We started our research with the ADC reaction
  • (Table 3). It can be seen that quinoline compounds 3 were obtained with excellent yield and chemoselectivity through the cyclometalated iridium-catalyzed ADC reaction of 2-aminobenzyl alcohol and different substituted aromatic secondary alcohols including electron-donating (Me, OMe) and electron
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2022

New azodyrecins identified by a genome mining-directed reactivity-based screening

  • Atina Rizkiya Choirunnisa,
  • Kuga Arima,
  • Yo Abe,
  • Noritaka Kagaya,
  • Kei Kudo,
  • Hikaru Suenaga,
  • Junko Hashimoto,
  • Manabu Fujie,
  • Noriyuki Satoh,
  • Kazuo Shin-ya,
  • Kenichi Matsuda and
  • Toshiyuki Wakimoto

Beilstein J. Org. Chem. 2022, 18, 1017–1025, doi:10.3762/bjoc.18.102

Graphical Abstract
  • the unique methyl ester in azodyrecin The structural diversity of aliphatic azoxy natural products can be attributed to variations in the alkyl side chains and the amino acid-derived counterparts. The variation in the amino acid-derived units is considerably large, as it includes primary and secondary
  • alcohols [24], methoxides [23][25][26], carboxylic acids [27], amides [28], ketones [29][30], an exo-olefin [31], and lactones [32]. Elucidating the mechanisms of structural diversification is essential when considering the synthesis of unnatural azoxides by a synthetic biology-based approach. However
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2022

A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions

  • Tommaso Lorenzetto,
  • Fabrizio Fabris and
  • Alessandro Scarso

Beilstein J. Org. Chem. 2022, 18, 337–349, doi:10.3762/bjoc.18.38

Graphical Abstract
  • reactions involving the formation of cationic intermediate species [41] like water elimination from an alcohol to provide the corresponding alkene, the isomerization of β-pinene and α-pinene and the cyclization of (S)-citronellal to secondary alcohols. The key point to interpret the action of the capsule in
  • performed extra control experiments for each investigated reaction also only with the more symmetrical and less acidic capsule A to underline the effect of the water content on the catalytic activity. (S)-Citronellal isomerization to cyclic secondary alcohols (S)-Citronellal is an enantiopure monoterpenoid
  • diastereoisomeric secondary alcohols (Scheme 2). The reaction of (S)-citronellal in the presence of 10 mol % of 16 at 60 °C was monitored by 1H NMR observing the rapid disappearance of the triplet signal at 9.78 ppm relative to the aldehyde hydrogen atom and consequent increase of the signals at 4.9 ppm relative to
PDF
Album
Supp Info
Letter
Published 28 Mar 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • conditions, both primary and secondary alcohols are oxidized to the corresponding aldehyde/ketone, so the chronology of the addition remains unclear whether the reaction proceeds exclusively via an alkyl radical followed by subsequent oxidation, an acyl radical, or a combination of both. Further, slight
PDF
Album
Review
Published 07 Dec 2021

Metal-free glycosylation with glycosyl fluorides in liquid SO2

  • Krista Gulbe,
  • Jevgeņija Lugiņina,
  • Edijs Jansons,
  • Artis Kinens and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 964–976, doi:10.3762/bjoc.17.78

Graphical Abstract
  • -glycosides to demonstrate the scope of acceptors compatible with our glycosylation conditions (Scheme 1). Most of the primary alcohols (2a, 2d–3f) were glycosylated in high yields (up to 91%). In the case of less reactive secondary alcohols (2b, 2h, 2j, 2k) and phenol (2l) better yields were obtained when
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2021

Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant

  • Peter J. Halling

Beilstein J. Org. Chem. 2021, 17, 873–884, doi:10.3762/bjoc.17.73

Graphical Abstract
  • are the reduction of prochiral ketones to chiral secondary alcohols, transamination of prochiral ketones to chiral amines, hydrolysis of symmetrical diesters to a chiral monoester, and esterification of prochiral diacids or diols. In desymmetrisation reactions, the enzyme initially produces the two
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2021

1,2,3-Triazoles as leaving groups: SNAr reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles

  • Dace Cīrule,
  • Irina Novosjolova,
  • Ērika Bizdēna and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 410–419, doi:10.3762/bjoc.17.37

Graphical Abstract
  • first performed on N9-alkylated bistriazole 2c. The reactions were carried out with primary and secondary alcohols in the presence of NaH in DMF. The developed transformation required only nearly equimolar loading of an alcohol and a base, and products 3a–f were obtained in yields up to 83% (Scheme 3
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • (1). Alternatively, the (±)-euphococcinine precursor 6 was prepared from 4, via deprotonation, silylation, and finally, silyl ether cleavage. Swern oxidation of alcohols 5 and 6 gave aldehydes 7 and 8, treated with allylmagnesium bromide, to generate secondary alcohols 9 and 10. These alcohols were
PDF
Album
Review
Published 05 Jan 2021

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • are used as the photoredox catalyst to prepare the corresponding primary and secondary alcohols from terminal and internal olefins. The substrate scope is broad, with excellent regioselectivities and yields up to 96% (Scheme 17). Decarboxylation reactions Carboxylic acid often serves as an inexpensive
PDF
Album
Review
Published 23 Jun 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • to optically active secondary alcohols (e.g., 342, Scheme 54) [97]. 2.2 Regioselective borylation of alkynes, alkenes, and allenes Cu-catalyzed borylation of C–C multiple bonds involves the formation of nucleophilic Cu–B species that coordinate with a π-system to initially transfer the boryl group
  • intermediate. Very recently the asymmetric Cu-catalyzed conjugate borylation (ACB) and addition (ACA) reactions onto α,β-unsaturated 2-acyl-N-methylimidazoles 440 have been developed using nonracemic Taniaphos (L48) as ligand, followed by an oxidation to the secondary alcohols resulting in high
PDF
Album
Review
Published 15 Apr 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • (Scheme 18) [49]. Later, the same group explored another application of TEMPO-modified graphite felt electrodes for enantioselective electrocatalytic oxidation of racemic secondary alcohols 45 and 48 (Scheme 19). (S)-Isomers of alcohol 48 possessing a chiral center at α-position to the hydroxy group were
  • catalytic amount of 61 (Scheme 24) [59]. A similar strategy using N-oxalyl radicals as chiral mediators has also been explored for the enantioselective electrocatalytic oxidation of secondary alcohols [60]. Tanaka and co-workers subsequently published another article on the kinetic resolution of sec
PDF
Album
Review
Published 13 Nov 2019

Functionalization of 4-bromobenzo[c][2,7]naphthyridine via regioselective direct ring metalation. A novel approach to analogues of pyridoacridine alkaloids

  • Benedikt C. Melzer,
  • Alois Plodek and
  • Franz Bracher

Beilstein J. Org. Chem. 2019, 15, 2304–2310, doi:10.3762/bjoc.15.222

Graphical Abstract
  • 5-subsituted products (Scheme 1). Quenching of metalated 9d with aldehydes 11a–d while warming to room temperature led to the formation of the expected racemic secondary alcohols 12a–d in moderate to good yields (50–66%, Scheme 1). Any attempts to improve the yields failed. The use of 2.2
  • ]naphthyridine (9d) and subsequent conversion into secondary alcohols by reaction with (hetero)aromatic aldehydes. Outcome of a D2O quenching experiment after metalation of 4-bromobenzo[c][2,7]naphthyridine (9d). Synthesis of 5-substituted 4-bromobenzo[c][2,7]naphthyridines via regioselective metalation of 9d
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2019

Metal-free mechanochemical oxidations in Ertalyte® jars

  • Andrea Porcheddu,
  • Francesco Delogu,
  • Lidia De Luca,
  • Claudia Fattuoni and
  • Evelina Colacino

Beilstein J. Org. Chem. 2019, 15, 1786–1794, doi:10.3762/bjoc.15.172

Graphical Abstract
  • successfully used to induce mechanochemical oxidative processes on several structurally different primary and secondary alcohols. The proposed redox process is safe, inexpensive and performing effectively, especially on the macroscale. Herein, an Ertalyte® jar has been successfully used, for the first time, in
  • a mechanochemical process. Keywords: AZADO; Ertalyte®; green chemistry; mechanochemistry; NaOCl·5H2O; selective oxidation; TEMPO; Introduction The conversion of primary and secondary alcohols to the corresponding carbonyl compounds (aldehydes and ketones, respectively) is of such importance in
  • . In particular, in this study, we used sodium hypochlorite pentahydrate (NaOCl·5H2O) in the presence of a catalytic amount of a nitrosyl radical (TEMPO or AZADO) to induce mechanochemical oxidation reactions on suitably selected primary and secondary alcohols. Performed in a high-energy ball mill and
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Photocatalyic Appel reaction enabled by copper-based complexes in continuous flow

  • Clémentine Minozzi,
  • Jean-Christophe Grenier-Petel,
  • Shawn Parisien-Collette and
  • Shawn K. Collins

Beilstein J. Org. Chem. 2018, 14, 2730–2736, doi:10.3762/bjoc.14.251

Graphical Abstract
  • photocatalyst, Cu(tmp)(BINAP)BF4, was found to be active in a photoredox Appel-type conversion of alcohols to bromides. The catalyst was identified from a screening of 50 complexes and promoted the transformation of primary and secondary alcohols to their corresponding bromides and carboxylic acids to their
PDF
Album
Supp Info
Letter
Published 30 Oct 2018

Cobalt-catalyzed peri-selective alkoxylation of 1-naphthylamine derivatives

  • Jiao-Na Han,
  • Cong Du,
  • Xinju Zhu,
  • Zheng-Long Wang,
  • Yue Zhu,
  • Zhao-Yang Chu,
  • Jun-Long Niu and
  • Mao-Ping Song

Beilstein J. Org. Chem. 2018, 14, 2090–2097, doi:10.3762/bjoc.14.183

Graphical Abstract
  • -naphthylamine derivatives has been disclosed, which represents an efficient approach to synthesize aryl ethers with broad functional group tolerance. It is noteworthy that secondary alcohols, such as hexafluoroisopropanol, isopropanol, isobutanol, and isopentanol, were well tolerated under the current catalytic
  • system. Moreover, a series of biologically relevant fluorine-aryl ethers were easily obtained under mild reaction conditions after the removal of the directing group. Keywords: alkoxylation; C–H activation; cobalt catalysis; 1-naphthylamines; secondary alcohols; Introduction Aryl ethers are common
  • alcohols was first reported by the Niu and Song group (Figure 1a) [30]. Successively, Ackermann realized the electrochemical cobalt-catalyzed alkoxylation via a similar process (Figure 1b) [32]. However, cobalt-catalyzed directed coupling of arenes with secondary alcohols has not been reported so far
PDF
Album
Supp Info
Letter
Published 09 Aug 2018

Artificial bioconjugates with naturally occurring linkages: the use of phosphodiester

  • Takao Shoji,
  • Hiroki Fukutomi,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 1946–1955, doi:10.3762/bjoc.14.169

Graphical Abstract
  • synthesis [69][70][71][72][73]. The activation of the 5’-primary alcohol is expected to be even more effective than that of the 3’-secondary alcohols (Figure 2), and the 5’-primary alcohol could then be coupled not only to other nucleosides but also various alcohols via a naturally occurring phosphodiester
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) – a powerful hypervalent iodine(V) oxidant

  • Irina A. Mironova,
  • Pavel S. Postnikov,
  • Rosa Y. Yusubova,
  • Akira Yoshimura,
  • Thomas Wirth,
  • Viktor V. Zhdankin,
  • Victor N. Nemykin and
  • Mekhman S. Yusubov

Beilstein J. Org. Chem. 2018, 14, 1854–1858, doi:10.3762/bjoc.14.159

Graphical Abstract
  • alcohols based on 2-iodoxybenzenesulfonic acid (IBS) as the active species [12][13]. IBS (or its sodium salt) is much more active as catalyst than IBX derivatives. In particular, it can be used as a highly efficient and selective catalyst (0.05–5 mol %) for the oxidation of primary and secondary alcohols
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2018

Anomeric modification of carbohydrates using the Mitsunobu reaction

  • Julia Hain,
  • Patrick Rollin,
  • Werner Klaffke and
  • Thisbe K. Lindhorst

Beilstein J. Org. Chem. 2018, 14, 1619–1636, doi:10.3762/bjoc.14.138

Graphical Abstract
  • or secondary alcohols, while the nucleophilic species needs to be acidic [13] with a pKa < 11. Otherwise the azo reagent would compete with the acidic nucleophile and participate in the substitution reaction [14]. Various compounds comply with that condition: carboxylic acids, phenols, hydrazoic acid
PDF
Album
Review
Published 29 Jun 2018

Mild and selective reduction of aldehydes utilising sodium dithionite under flow conditions

  • Nicole C. Neyt and
  • Darren L. Riley

Beilstein J. Org. Chem. 2018, 14, 1529–1536, doi:10.3762/bjoc.14.129

Graphical Abstract
  • successfully demonstrated utilising sodium dithionite under standard batch conditions by refluxing for 12 hours in the presence of sodium dithionite and sodium bicarbonate (1 M) in an isopropanol/water mixture. Several primary and secondary alcohols (Table 1) were prepared in yields of 52–98% and 49–73
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2018

Three-component coupling of aryl iodides, allenes, and aldehydes catalyzed by a Co/Cr-hybrid catalyst

  • Kimihiro Komeyama,
  • Shunsuke Sakiyama,
  • Kento Iwashita,
  • Itaru Osaka and
  • Ken Takaki

Beilstein J. Org. Chem. 2018, 14, 1413–1420, doi:10.3762/bjoc.14.118

Graphical Abstract
  • substituted secondary alcohols, as demonstrated in the Nozaki–Hiyama–Kishi (NHK) reaction (Scheme 2) [4][5][6][7][8][9]. Although the catalyst combination allows the use of organic halides as carbon nucleophiles, a multicomponent coupling reaction using a similar catalyst combination has had limited success
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2018

2-Iodo-N-isopropyl-5-methoxybenzamide as a highly reactive and environmentally benign catalyst for alcohol oxidation

  • Takayuki Yakura,
  • Tomoya Fujiwara,
  • Akihiro Yamada and
  • Hisanori Nambu

Beilstein J. Org. Chem. 2018, 14, 971–978, doi:10.3762/bjoc.14.82

Graphical Abstract
  • secondary alcohols 14b–f and primary alcohols 14g–k with 0.3 equiv of 17 in the presence of 2.5 equiv of Oxone® and 1 equiv of Bu4NHSO4 in an 8:3 mixture of MeNO2 and water at room temperature. These results as well as those obtained from a similar oxidation using 13 as a catalyst are summarized in Table 2
  • developed 2-iodo-N-isopropyl-5-methoxybenzamide (17) as an efficient catalyst for the oxidation of primary and secondary alcohols. The reaction of benzylic and aliphatic alcohols 14 with a catalytic amount of 17 in the presence of Oxone® and Bu4NHSO4 at room temperature proceeded smoothly to provide good to
  • for oxidation of alcohol, especially benzylic alcohols. Experimental Typical experimental procedure for the oxidation of secondary alcohols 14a–f: Secondary alcohol 14 (0.50 mmol) was added to a solution of the catalyst (0.15 mmol) and Bu4NHSO4 (170 mg, 0.50 mmol) in a mixture of MeNO2 (1.6 mL) and
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2018
Other Beilstein-Institut Open Science Activities